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[13] R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, andprocessing applications to foster a broader picture of the physical
R. M. Derosier, “Four-photon mixing and high-speed WDM systems phenomena involved.
J. Lightwave Technolyol. 13, pp. 841-849, May 1995. An attractive compact form of the coherent-state transform given
by (2) can be developed with the aid of the Bargmann transform.
In the Bargmann transform, the phase space coordinatasd p
are combined together to form a complex variable= ¢ — ip.
Utilizing the Bargmann transform, the phase space representation

A Time—Frequency Analysis Method F(p, q) of a function f(z) becomes a complex functioF(z), and
for Radar Scattering all the powerful techniques of complex variable theory are available
for the representation and analysis of the transforms.
Haralambos N. Kritikos and Joseph G. Teti, Jr. The Bargmann transform has been introduced by a number of
investigators [1], [4]-[7], and is defined as
Abstract—A time—frequency analysis method to study electromagnetic FBf(z)= 7r11/4 67;2/4/ e”fxz/zf(ar) da. (4)

scattering is presented and demonstrated using canonical objects. The
time—frequency analysis method utilizes the Bargmann transform to for- The Bargmann transform is an isometry from the space of square
mulate the signal representation in phase space. The use of the Bargmannintegrable functioniz(R) to the spaceLz((D 6—\:\2/2 d=) which is

transform leads to an attractive parametric signal representation in terms . .
of complex polynomials, and elliptical filters can be constructed to crop known as the Fock spacg. The Fock space is defined as

or extract selected areas of the phase plane. The signal representation . . )

and filtering operations are demonstrated using scattering responses + = 4 £+ I is an entire function orC,

from spheres and thin wires, and the prominent scattering features are -

. . —1-1/2

identified and extracted. 1P| = / \F(2)Pe 1 gz < x} ®)
Index Terms—Scattering, time—frequency analysis. —o0

wherez = ¢ — ip, andgq andp are the phase plane coordinates.
The Fock space is the space of entire analytic functions defined in
. BACKGROUND the whole complex plan&. Describing a dynamical system in terms
Electromagnetic signals are traditionally expressed in either théits space position coordinateand momentunp is known as the

time domain or the frequency domain. However, with the dephase space representation.
velopment of quantum optics, a different formulation has been The Bargmann transform can also be written in a traditional form
introduced to take into account the particle-like nature of quantize$ing the phase space variabjesind ¢ as
electromagnetic fields (e.g., photons) [1], [4]. The mathematical L ey e [T —ipe—(e—q)2)2 ]
formalism is known as coherent-state analysis. The basic componen@f(‘) =Tac ¢ Lx ¢ flx)dz. (6)

of the analysis are the coherent states which are of the form The corresponding inverse Bargmann transform in this form [1], [4] is

g(p,q)(l,) — T:Teipxe—ipq/%—(w—q)z/‘l (1) I :B_1(z|z‘2/4F(m)
where, in quantum mechanical terms, these are the photons that are emu/2 poo poo 2/ =24
characterized by a momentumand a position coordinate. Any :W/ / e e F(z)[e dz],
signal f () can be represented in the phase plan&'gs ¢) [4], [5] T ds = dvd
o . z=dpdg. (7)
through the projections given by the well-known transform
Fp.a) = /_OQ fla)gw O () da @ Il. HERMITE-FUNCTION EXPANSIONS
where the bar denotes the complex conjugate. The correspondinghe set of Hermite functions is the natural basis for the Bargmann
inverse transform [3], [4] is given by transform. This represents an important analytical tool for the rep-
0o oo ) resentation of the signals. The orthogonal Hermite functippér)
flx) = / / F(p. )9 ¥ (x) dpdg. (3) are
If one makes the identification of with ¢t (i.e., # — ct where e_é H,(x) .
¢ is the velocity of light), then the above transform becomes tﬁ%”(m) ~ ai Noo with the Bargmann transform
well-known windowed Fourier transform. In signal processing, the on
windowed transform provides a localized time—frequency picture of (n(2) = Nezl ®)

a signalf (¢). The momentunp corresponds to the angular frequency

w (i.e.,p — ), and the coordinate corresponds to the center of thewhereHn(w) is the Hermite polynomial. It is important to note that

window transformr (i.e., ¢ — 7). In this paper, we elect to keep thethe Ba_rgmann transform of th_e Hermite function is a monor_mal.
physics-based identity of the analysis and blend it with the Signéﬁpco_rdlngly,_an arbitrary functionf(x) represented in a Hermite
function basis is
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, Phase Plane Signature IF(p,q)l and Filter Footprint
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Fig. 1. Electromagnetic impulse response of a perfectly conducting sphere. Phase space analysis and selective filtering of the creeping wave.
Notice that the phase space transform is a sum of weighted monomialgere S is a selected area in the phase plane. It has been shown

or, in fact, a power series in. This is in accordance with the [1], [4], [5] that the filtering operator for a selected finite arga
basic premise of Bargmann who stated that the Bargmann transfasma traceless operator. This implies that a set of eigenfunctions and

projections are entire functions. eigenvalues exist such that
The expansion of signals in terms of the orthogonal Hermite

functions enables one to carry out very efficient filtering in the phase Pspon(x) = Anpn(x). (12)

plane. The filtering operator is defined in the inverse transform where

the inverse integral in (7) However, for the special case where the filtering region is an elliptical
2 disk, the eigenfunctions are the Hermite functions. Consequently,

Ps,f(x) = ¢ = / / C?nrc—?2/4F<Z)[c—\:\2/4 dz]. filtering can be implemented by finding an expansion of the signal in
Q Sk thex domain (or time domain) in terms of the Hermite functions, and

dz =dpdq (11) weighing the coefficients with the eigenvalues of the filter operator
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Phase Plane Signature |F(p,q)l and Fitter Footprint
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Fig. 2. Electromagnetic impulse response of a thin wire. Phase space analysis and selective filtering.

Ps; as follows [5]:

R2/2

Pspf(@) =3 Alpal@), F(@))u(e) (13)

where R is the radius of the filter disk in the phase plang,is the
eigenvalue

1 2 /0
An 77’(7)/ +1, R°/2)

n

(14)

and ~ is the incomplete gamma function.

The upper limit of the summatiofy’ RTZ is proportional to the
area of the filter. It has been shown [5] that, in general, the number
of terms necessary to capture the filtered signal are

__ Filter area
N 2r

N (15)
The number of termsV is also known as the degrees of freedom of
the filtered signal.

The Hermite expansions are very robust and easy to implement
numerically. The corresponding monomials are also orthogonal in the
phase plane and provide a convenient basis for expanding the signals.
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Furthermore, the monomials ideally exhibit the analytical propertiegherek is the wavenumber andis the range. The quantity of interest

of the transformed signals. here is the scattering amplituge k) = [S(If)], which is given by
the Mie series
ll. A PPLICATIONS S(k) i ‘
== —1)"( 1/2)(bn — an A2
Two examples have been chosen to demonstrate the use of the { k } kn;( )i+ 1/2) ) (A2)

phase space signal representation and filtering. In both examples,

the signal was the calculated theoretical electromagnetic impul¥8ere

response. The impulse response was approximated by taking the _ n(ka) e [kajn(ka)]
inverse Fourier transform of an extremely broad-band frequency- "~ 2 (ka) " %[kah&?)(k:a)]
domain representation of the normalized scattering amplitude of the e

electric field (see Appendix A) due to an incident plane wave. TH#d ¢ is the velocity of light. Typically.2|ka| terms are needed for
first target was the sphere for which the exact solution is known he sum to converge. The inverse Fourier transform of the scattering
terms of the Mie series [2, p. 397]. The second example is the trplitude approximates the time-domain impulse response for the
wire where we used the Ufimtsev approximate solution [2, p. 483jphere.

These two examples represent two extremes. The scattered signal

from the sphere is mainly due to a specular return and creeping-waeScattering from a Thin Wire

body scattering, whereas the scattered signal from the thin wire isymifetz [2, p. 397] has shown that the scattering amplitude for a

due mainly to resonance. ) thin wire due to a plane wave at broadside incidence is
An example of filtering the scattering response of a perfectly

conducting sphere of radius= /m is shown in Fig. 1. The impulse {Q}
response of the sphere has a sharp specular peak followed by thé

k=w/c (A.3)

greeping wave which appears at a time= (2a + w)/c. An (_elli_pt_ic _1 27 (= 14(Q0 + I 2)(1 +iL)
filter has been chosen in phase space with= 10 and ellipticity E (20+421n2)?
o = 0.3 to capture most of the energy due to the creeping wave. - 2e¥L(Qp+21n2)?g(2L, 7/2)}

The filter window and the filtered signal are shown in Fig. 1. The %L Qog(2L, 7/2)
filtered signal closely approximates the portion of the signal desired X {1 —g(2L, n/?){1/2+iLT(2L) ~ {3.5Iq 7'2L 0 H
for extraction. +etQog(2L, 0)
Scattering from the wire of length = I is shown in Fig. 2. The (A4)
return of the wire is characterized by a long ringing trail with thgynere
period of the oscillation given bfL/c. A filter of radius R = 10
and ellipticity « = 0.3 was placed to capture the first few cycles of Qo = —2Inka — 2y +im (A.5)
the ringing. The filtered response illustrates that the main featuresao{S the radius of the wire}; is the wavenumber, = 0.57731566
the selected region are well-approximated. '
gz, 8) = [Qo + 1(22) 4+ T(2z cos”8/2)] (A.6)
l(z)=~+Inx —ir/2
T(x)=—e""[Ci(x) 4 iSi(x) —in /2]

IV. CONCLUSIONS
The coherent-state analysis in combination with the Bargmann

transform allows the representation of signals in the phase plane Ci(r) = /oo cos§ de

where both the time and frequency features can be displayed si- x 13

multaneously through a mathematically compact description. Distin- Si(z) = /"’f sin & d A7)
guishing features can be extracted by placing elliptical filters in the A 0 £ ’ ’

STEIECtEd art_aas_of the phase plane_. For the spemal_case Of. e”'pt}fglin the procedure for the sphere, the inverse Fourier transform of
filters, the filtering can take place in the time domain by using ﬂ}ﬁe

. . : o scattering amplitude was used to approximate the time-domain
proper Hermite function expansions. The ellipticity and the placement g P : PP
) |mé)fulse response for the wire.
of the filters can be chosen as to accentuate the temporal features

targets like the sphere or the resonant frequency features of targets
like that of the ringing wire. The placement of the filters is arbitrary

and can be positioned anywhere in the phase plane. The advantaggqfyv. Bargmann, “On the Hilbert space of analytic functions and an
the suggested method is that it can be performed in the time domain associated integral transformCommun. Pure Appl. Mathvol. XIV,
without having to transform into the phase plane, crop or localize, = 187-214, 1961.

. . : [2] J. J. Bowmaret al, Electromagnetic and Acoustic Scattering by Sim-
and then transform back into the time domain. ple Shapes. Amsterdam, The Netherlands: North Holland Publishing,

19609.
[3] J. R. Klauder and B. S. Skagerstaf@pherent States. Singapore:
APPENDIX A World Sci., 1985.
[4] I. Daubechies,Ten Lectures on WaveletsPhiladelphia, PA: SIAM,
A. Scattering from a Sphere 1992. i ) . )
9 P o [5] H. N. Kritikos and J. G. Teti, Jr., “Time—frequency filtering of scattering
Bowman [2, p. 397] has shown that the scattered electric field on signatures,” inProc. PIERS July 1995.

axis from a plane wave incident on a perfectly conducting sphere if] H. N. Kritikos, J. H. Cho, and J. G. Teti, Jr., “Bargmann transforms and
phase space filtersPIER, vol. 17, pp. 45-72, 1997.
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